Actualmente
Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Let $P$ be a partition of $[a, b]$, $I_n = [x_{i-1}, x_{i}]$, $\Delta x_i = x_{i} - x_{i-1}$, then
Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Let
Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Let $P$ be a partition of $[a, b]$ and $X$ a selection of points in each subinterval $c_i \in [x_{i-1}, x_{i}]$. Let $\Delta x_i = x_{i} - x_{i-1}$. The associated Riemann sum is $$S(f, P, X) = \sum_{i = 1}^{n} f(c_i) \Delta x_i$$
Let $f: [a, b] \to \mathbb{R}$ be a bounded function. The function $f$ is Riemann integrable on $[a, b]$ if and only if $$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall P)(\forall X): \|P\|\ \leq \delta \implies | I - S(f, P, X) | \leq \varepsilon$$
Let $f: [a, b] \to \mathbb{R}$ be a bounded function. The function $f$ is Riemann integrable on $[a, b]$ if and only if $$(\forall \varepsilon > 0)(\exists P): U(f, P) - L(f, P) \leq \varepsilon$$
Let $f: [a, b] \to \mathbb{R}$ be a bounded function. The function $f$ is Riemann integrable on $[a, b]$ if and only if $$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall P): \|P\|\ \leq \delta \implies U(f, P) - L(f, P) \leq \varepsilon$$
Let $f: [a, b] \to \mathbb{R}$ be a bounded function, $P_1, P_2$ be partitions of $[a, b]$, then $$L(f, P_1) \leq U(f, P_2)$$
Let $f: [a, b] \to \mathbb{R}$ be a bounded function, $P_1, P_2$ be partitions of $[a, b]$ where $P_2$ is a refinement of $P_1$, then $$L(f, P_1) \leq L(f, P_2) \leq U(f, P_2) \leq U(f, P_1)$$
Let $f: [a, b] \to \mathbb{R}$ be a bounded function, then $L(f) \leq U(f).$